Quick Start

The MusicBox code base can be found on GitHub. That web page gives instructions for running in a Docker Container.

Modifying the Environmental Conditions or Initial Conditions

Follow the usual process for development in a docker container:

git clone --recurse-subnodul es https://github. comi NCAR/ Musi cBox

cd MusicBox
docker build -t mnusic-box-test . --build-arg TAG_ | D=chapnman

docker run -p 8000: 8000 -it rmusic-box-test bash

Install ftp in the container. Note that you are installing this in your container and not on your computer.

dnf -y install Iftp

Collect the environmental conditions file. (These are time-evolving samples from a current-day simulation of CAM.)

cd / Musi cBox/ Musi cBox_host/ dat a/ envi ronnent al _condi ti ons

Iftp ftp.acomucar. edu
Iftp> cd micm_environmental_conditions
Iftp> get Boulder.evolving_conditions.nc

Iftp> exit

Note that ftp://ftp.acom.ucar.edu:/micm_environmental_conditions contains both environmental conditions and initial conditions for a several locations
® Boulder
® Seoul
® Global Data (Very large files (15Gb) that can take upwards of 10 minutes to download over a good connection)

Collect the initial condition.

cd / Musi cBox/ Musi cBox_host/data/initial _conditions

| ftp ftp.acomucar. edu

Iftp> cd micm_environmental_conditions
Iftp> Is

Iftp> get Boulder.i.nc

Iftp> exit
In /MusicBox/MusicBox_host, edit the file MusicBox_options to point to your new data:

linput file path
env_conds_file ="../data/environmental_conditions/Boulder.evolving_conditions.nc'

init_conds_file = "../data/initial_conditions/Boulder.i.nc'
Then build and run.

cd /MusicBox/MusicBox_host/src

make

https://github.com/NCAR/MusicBox
https://github.com/NCAR/MusicBox
http://ftp.acom.ucar.edu
http://Boulder.evolving_conditions.nc
http://ftp.acom.ucar.edu/
http://boulder.evolving_conditions.nc/

/MusicBox

Running the code in a Docker container, if you have no viewing tool for netCDF files

For a Mac, you will have to open up xQuartz to allow x11 connections. This is a bit of a security hole.
® Open XQuartz
® set Preferences->Security->Allow connections from network clients to true
® restart XQuart
On other machines you may have to do similar operations.
Build and run model
From the terminal execute the following:
docker build -t nusic-box-test . --build-arg TAG_ | D=chapman
xhost + 127.0.0.1
docker run -it -e DI SPLAY=host. docker.internal:0 nusic-box-test bash
cd Musi cBox/ Musi cBox_host/ buil d

./ Musi cBox
ncvi ew ../ Misi cBox_out put. nc

Running another mechanism tag (chapman) in the same Docker container

From /MusicBox/Mechanism_collection directory, collect the tag from http://www.acom.ucar.edu/cafe, preprocess it to get the fortran for the solver, and
stage it so that it can be complied.

./get_tag.py -tag_id chapnan

./ preprocess_tag. py -nmechani sm source_path configured_tags/chapman -preprocessor | ocal host: 3000

./ stage_tag.py -source_dir_kinetics configured_tags/chapman

From /MusicBox/MusicBox_host/build, compile the code and run it

make

./MusicBox

Running the code in a Unix environment

There are many dependencies in a UNIX environment. These are some of the dependencies that will need to be installed on your system.

CMake3
Fortran 2008 compiler
git
netcdf libraries
wget
python3
© requests library

® node
O express, helmet
® netcdf analysis and viewing tools
® Others that have been left off this list by accident
Environments including these dependencies have been set up on modeling2.acom.ucar.edu and cheyenne.ucar.edu

Steps for accessing and running the code

git clone https://github.com/NCAR/MusicBox

http://MusicBox_output.nc
http://www.acom.ucar.edu
http://www.acom.ucar.edu
https://github.com/NCAR/MusicBox

From the MusicBox directory, collect the rest of the code base

./manage_externals/checkout_externals

Get the environmental conditions for the box, and configure a tag (272) from the cafe-dev web server:

cd Mechanism_collection

python3 get_environmental_conditions.py

python3 get_tag.py -tag_id 272 -tag_server cafe-devel

python3 preprocess_tag.py -mechanism_source_path configured_tags/272
python3 stage_tag.py -soure_dir_kinetics configured_tags/272

Build the code

cd MusicBox_host
source etc/CENTOS_setup.sh -- or -- source etc/Cheyenne_setup_intel.sh

rm -rf build; mkdir build; cd build
cmake3 ../src/CMakelLists.txt -S ../src -B . -DCMAKE_BUILD_TYPE=Debug
make

Run the Code
/MusicBox

Users may find it informative to check out the options for any of the above python scripts

python3 burrito.py --help
python3 eat_it.py --help
python3 preprocess_tag.py --help

Adding parameterizations using CCPP

MusicBox uses the CCPP coding framework. This framework is meant to support "Plug-n-Play" for additional physical process parameterizations. Users
may wish to contribute to the MusicBox effort.

Adding a new scheme

The steps to adding a new MusicBox scheme are as follows:

* Create XXX.F90 and XXX.meta files (the fortran code and its accompanying metadata file)
* Use "type = scheme" in the metadata file

* Add the XXX.meta file to MusicBox_scheme_files.txt

* Add the scheme to MusicBox_suite.xml in the order in which it is to be run

Adding a new ddt

The steps to adding a new ddt to MusicBox are as follows:

* Create XXX.F90 and XXX.meta files (a fortran module that contains the ddt and its accompanying metadata file)
* The metdata file will use "name = Name_of_your_ddt" and "type = ddt".

* Each element in the ddt will be documented with its local name, standard name, type, etc.

* Add the XXX.meta file to MusicBox_ddt_files.txt

* Add the ddt to MusicBox_mod.F90 and MusicBox_mod.meta

* The ddt can then be passed in/out and "use"d within any module

	Quick Start

