Marine IODA/UFO Hackathon (March 25 - April 5, 2019)

Location

Foothills Lab 3300 Mitchell Ln, Boulder, CO 80301

Organizers

Technical: gvernier, Thomas Auligne, Travis Sluka

Administrative: Katherine Shanahan

Participants

Anna Shlyaeva (part time), Hamideh Ebrahimi, Rahul Mahajan, Shastri Paturi, Stylianos Flampouris, Stephen Herbener (part time)

Deliverables

Note: Testing will be done within the cycling of SOCA 3/4DHofX and/or 3DVAR.

- Applications that can be embedded in the SOCA workflow and will create observation files in a IODA format for a specific DA or HofX window.
- New UFO's: Cool skin, and generic implementation of Salinity profiles and sea surface salinity.
- Report/Reflection on code sprint.

Data base	UFO	Developer (s)	obs to ioda	ioda file concatenation	test: IODA	test: NL UFO	test: UFO TLM /AD	test: SOCA HofX	test: SOCA 3DVAR
FNMOC::Profiles (Profilers and moorings)	Insitu- temperature Generic Salinity profiles	Rahul Guillaume	x x	x x	N/A	N/A	N/A	x x	x x
FNMOC::Surface Drifters	Generic SST	Rahul	х	х	N/A	N/A	N/A		
NESDIS::RADS	ADT	Guillaume, Shastri	х	х	х	х		Х	Х
NESDIS::CryoSat-2 thickness (currently not available)	Thickness	Guillaume, Travis							
NCEP-Data tank::L2-SST (AVHRR: GOES-16, VIIRS- NPP, HIMAWARI-8, NOAA-19, METOP-A)	Generic SST Cool skin	Shastri, Stylianos, Hamideh	Х			x x	x x		
NCEP:: Profiles, ships, buoys, drifters, gliders,	Insitu- temperature Salinity profiles	Shastri, Stylianos	x x	x x		х	х	х	х
NCEP::Altimeters	Significant wave height	Stylianos	х	Х					
EMC::lce fraction	Ice fraction NASA team (if time permits)	Shastri, Guillaume	х	х	N/A	N/A	N/A		
JPL SMAP SSS	Generic SSS	Hamideh, Travis	х	Х	х	Х	х	Х	Х
RSS SMAP SSS	Generic SSS	Travis	Х	х	х	Х	х	х	х
GODAS all obs	All	Travis	х	х	N/A	N/A	N/A	х	х
GMAO all obs	All	Rahul	х	х	N/A	N/A	N/A		

NESDIS:: (L2 and L3) VIIRS AVHRR Generic SST	Travis	х	X	N/A	N/A	N/A	Х	Х	
--	--------	---	---	-----	-----	-----	---	---	--

Table 1: Tabulated list of deliverable. Check the empty box when done.

Prerequisites, to do before March 25

- 1. Build/test the SOCA bundle
- 2. Centralized server(s) holding observations in their original file formats:
 - a. FNMOC
 - b. NESDIS: RADS, L-2 SST, CryoSat-2 Thickness
 - c. NCEP data tank
 - d. SMAP SSS retreivals
 - e. EMC sea-ice fraction (SSMI, SSMI-S, AMSR-2)
 - f. GODAS observation data base available on Theia
 - g. GMAO observation data base available on Discover/Shared Drive
- 3. Build Stephen Herbener's IODA-IO, if available (including the python interfaces).
- 4. Make sure all current Marine UFO's are in working order (Travis & Guillaume).
- 5. Setup HofX and 3DVAR cycling experiment (Rahul, Travis & Guillaume).
- 6. Prepare the nonlinear, tangent and adjoint of the cool skin UFO. (Hamideh & Guillaume).

Tentative Work plan

Some of us will work on the UFO during the 2 weeks, but for the most part, week 1 will be on IODA interfaces and week 2 on UFO's.

Week 1: IODA interfaces

Objectives: Provide observations to SOCA for cycling experiments. Develop interfaces to databases for NOAA/EMC and NASA/GMAO, usable in the SOCA cycling workflow. We will make use of Stephen Herbener's IODA-IO python package, if available.

Note: Describe the observation type you are working on in Stephen Herbener's IODA wiki.

Week 2: UFO

We will reassess our week 2 objectives at the end of the first week. In the meantime here is the tentative work plan: Refactor the existing marine UFO and implement new UFO's (including the basic QC needed to run a 3DVAR application).

Required tasks

- Anna Shlyaeva: Fix issues with the GeoVaLs writer
- gvernier & Travis: Implement needed GeoVaLs for QC and new UFO in SOCA

Refactoring or Generic implementation

- ✓ Insitu-profiles
- Salinity (generic)
- SST (generic)
- SSS (generic)
- Sea ice fraction
- Sea-ice thickness
- ADT
- Cool skin (new UFO)

Extras

If time permits:

1. ADCP Forward operator

- Diurnal sea surface temperature
 Sea-ice elevation
 sea-ice fraction retreival for SSMI, SSMI-S and AMSR-2 implemented as a pre-filter