
1.

2.

1.

1.

2.

1.

WRF
The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both
operational forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation
system, and a software architecture allowing for computational parallelism and system extensibility.

Building WRF requires a C compiler, a Fortran90 compiler, Perl version 5, MPI Libraries, and the NetCDF libraries.

The WRF benchmark can be downloaded from http://web.ncar.teragrid.org/~bmayer/benchmarks/WRFV2.tar.gz

1 Procedure

Follow these steps to build and run the WRF benchmark.

In the WRFV2 directory, run On systems already supported by WRF, this script will present a list of compile options for your ./configure.
computer, select the option you wish to compile. A file will be created. The file is to be submitted with the configure.wrf configure.wrf
benchmark results. It may be modified if desired. For other systems, it may be necessary to construct a file. Refer to templates configure.wrf
listed in the file in the directory.configure.defaults arch
Once a script has been generated, compile the code by typing:configure.wrf

./compile em_real

in the top-level directory. The resulting executable is in the directory. A symbolic link to the executable is created in , WRFV2 wrf.exe run test/em_real
where the model is typically run.

When reconfiguring the code to compile using a different configure option, type

 ./clean --a

before issuing the and commands again. The previous file will be delete by .configure compile configure.wrf clean --a

Two benchmark cases are included with this distribution of WRF, a 12 km simulation and a 2.5 km simulation. The data for these benchmark
cases is located in the directories, respectively. To run one of the benchmark cases copy all the files from the WRFV2/data/[12km, 2.5km]
relevant data directory into the directory, which contains a link the executable, and run the model from this WRFV2/test/em_real wrf.exe
directory.
Unless otherwise directed, it is not necessary to edit the file that is provided with the case; however, for distributed memory namelist.input
parallel runs, the default domain decomposition over processors in X and Y can be overridden, if desired. Add and variables to nproc_x nproc_y
the domains section of and set these to the number of processors in X and Y, keeping in mind that the product of these two namelist.input
variables must equal the number of MPI tasks specified with minus the number of I/O processes (if any).mpirun

The file also provides control over the number and shape of the tiling WRF uses within each patch. On most systems, the default tiling will namelist.input
be only over the Y dimension; the X dimension is left undecomposed over tiles. This default behavior is defined in in the frame/module_machine.F
routine . The default number of tiles per patch is 1 if the code is not compiled for OpenMP or the value of the OpenMP function init_module_machine omp

. This default is defined in in the routine . The default number of tiles may be overridden by setting _get_max_threads() frame/module_tiles.F set_tiles2
the variable to a value greater than 1 in the domains section of the file. Or the default shape of a tile can be specified by setting numtiles namelist.input ti

 and in the domains section of the file. These will override both the default tiling and if it is set.le_sz_x tile_sz_y namelist.input numtiles

Run the model according to the system-specific procedures for executing jobs on your system. The model will generate output data to files
beginning with and, for distributed memory runs, a set of and files where is the MPI task wrfout_d01 rsl.out.dddd rsl.error.dddd dddd
number. You can use either RSL or RSL_LITE for distributed memory runs (RSL_LITE is recommended). When running with RSL, a file show_d

 will also be generated, which contains decomposition information. With RSL_LITE the decomposition information appears in the omain_0000
form of patch starting and ending indices at the beginning of each file. For non-distributed memory runs, capture the output from the rsl.error.*
running program to a file to be returned along with the benchmark results.

2 Validation

Each run of a benchmark test case will produce an output data file named:

wrfout_d01_2001-10-25_03:00:00 for the 12km case

or

wrfout_d01_2005-06-04_06:00:00 for the 2.5km case

and a corresponding reference file named is included in the data directory for each benchmark case. Numerical validation can be wrfout_reference
examined by running the script to compare model output against the reference file as:diffwrf

diffwrf wrfout_reference > diffout_ your_output tag

Sample output from runs are included in the data directories in the files and . The number of digits of diffwrf diffwrf_conus12.txt diffwrf_large.txt
agreement in your files should not differ significantly from that shown in this sample output. The program is distributed and compiled diffwrf_tag diffwrf
automatically with WRF. For the 12 km case the version that should be used can be found in the subdirectory of the top level diffwrf external/io_netcdf/
WRFV2 directory. For the 2.5 km case the version in the subdirectory should be used. For both versions the executable is named diffwrf external/io_int/

. Note: if the files being compared by are identical then no output will be produced.diffwrf diffwrf

http://web.ncar.teragrid.org/~bmayer/benchmarks/WRFV2.tar.gz

3 Data

For both the 12 km benchmark and the 2.5 km benchmark the amount of wallclock time elapsed during each time step is written to the files (for rsl.out.*
distributed memory parallel) or to standard output (non-distributed memory). The performance of the WRF benchmarks will be measured as the average
of the times labeled “Timing for main” written either to the file (distributed memory) or to the file capturing redirected standard output (non-rsl.out.0000
distributed memory). The “average time” can be calculated, for example, using the command:

grep "Timing for main" rsl.out.0000 \| awk 'BEGIN{t=0;at=0;i=0;}{t=t+$9;i=i+1;}END{at=t/i;print "\nAverage
Time: " at " sec/step over " i " time steps\n"}'

The 12 km WRF benchmark should be run on multiple processor counts: using 1 processor, using the total number of available batch processors in the
system, and on each power of two between 1 and the maximum number of processors, (i.e. 1, 2, 4, 8, …, max_pe). The “average time” (as calculated in
the above example, or similarly) should be recorded in the K_WRF worksheet of the benchmark results spreadsheet.

The 2.5 km WRF benchmark should be run using 128 processors, the maximum available number of batch processors, and two equally spaced processor
counts in between 128 and the max. Offerors may optionally choose a smaller number of processors than 128 for the minimum (e.g. 64 or 32) for the 2.5
km WRF benchmark. The “average time” (as calculated in the above example, or similarly) should be recorded in the K_WRF worksheet of the benchmark
results spreadsheet.

For each run return the following files:

namelist.input
configure.wrf
Either of the following
rsl.error.0000 and rsl.out.0000 (distributed memory parallel)
terminal output redirected wrf.exe (non-distributed memory)
diff_ (output from - see validation section for details) tag diffwrf

In addition, submit a file of the WRFV2 source directory with any source code modifications you may have made. Only one such file is needed unless tar
you used different versions of the code for different runs. Please run in the WRFV2 directory and delete any , , , and any clean --a wrfinput wrfbdy wrfout
other extraneous large files before archiving. Compress the file with ; it will not be larger than 10 MB if you have cleaned and removed data tar gzip
files. It is only necessary to submit one file of the WRFV2 source directory if you are submitting benchmarks for more than one case and if you have tar
not modified the source code from case to case.

	WRF

