
PIOVDC
ABOUT
PIOVDC is an extension to NCAR's used by NCAR and various other organizations for easily writing massive data sets in an Parallel IO software
optimized, parallel manner. The extensions involve incorporating both extra logic and a subset of the VDF library from the visualization package in VAPOR
order to allow for data written through PIO to be compressed on the fly into a . This allows for scientists writing massive data Vapor Data Collection (VDC)
sets to have the option of either writing less data at a lower than full resolution or write it all into files with progressive compression access that can be
visualized with the VAPOR package. Compared to the offline tools provided by the VAPOR package, using PIOVDC allows data to go from a user
program's memory straight into the vdf format, with no manual conversion post-process needed.

BUILDING/INSTALLING
PIOVDC is currently comprised of two different projects that must be fetched, compiled, and installed separately.

The prerequisite software necessary to build/install PIOVDC are:

An MPI runtime/compiler suite
A configured and installed PNetCDF or NetCDF (>4.1) + HDF5 (>1.8.5). The latter is provided as a fallback option, but not recommended as
performance with NetCDF using PIOVDC does not seem as reliable as PNetCDF and version/bug conflicts make matching up the right NetCDF
and HDF5 versions much more difficult than simply using PNetCDF. This document will assume that PNetCDF is being used to build
PIOVDC.
An installed libraryexpat

PIO

The first project is the PIO library. To retrieve PIO, you must use svn to download the PIO software.

svn co https://parallelio.googlecode.com/svn/trunk_tags/pio1_5_7/

After retrieving the PIO source, the software must be configured using your installed PNetCDF location. PIO uses configure options to enable/disable the
optional VDC components. Execute the commands:

cd pio1_5_7/pio
./configure --enable-pnetcdf=yes PNETCDF_PATH=/path/to/installed/pnetcdf --enable-netcdf=no --enable-
compression=yes

After configuration the software is ready to be built by running GNU make

WARNING: if the configuration completes and MPICC has not been detected (if you see the string "{MPICC=}" in the list of Output Variables generated
by configure), you should rerun configure manually setting the environment variable to a known MPI C compiler:

./configure MPICC=mpicc --enable-pnetcdf=yes PNETCDF_PATH=/path/to/installed/pnetcdf --enable-netcdf=no --enable-compression=yes

Without the MPICC compiler there will be files that cannot be built using the make files.

Running GNU make will generate the necessary PIO files, libpio.a, and pio.mod:

make

For now you are finished with PIO

VAPOR

Next the source for building the VDF library will be needed:

The VDF library subset can be downloaded from the PIO repository.

svn co https://parallelio.googlecode.com/svn/libpiovdc/trunk/ .

http://code.google.com/p/parallelio/
http://www.vapor.ucar.edu/
https://docs.vapor.ucar.edu/docs/vapor-data-preparation/vapor-data-preparation
http://expat.sourceforge.net/

This will download a folder containing all the necessary parts to build the VDF libraries. To start, run autoreconf to generate the platform specific files, then
run the configure script:

./configure --with-pnetcdf=/path/to/pnetcdf

WARNING: If the expat header installed into the system and not detected then it is in a non-standard path. Use the --with-expat option in
order to tell the configure script where expat is installed.

After configuration is complete you may build by running GNU make. This will generate two static libraries, libpiovdc.a, and libpiocommon.a in the vdf and
common directories respectfully, both of which are necessary for running PIOVDC.

Linking

Once all of your source code has been compiled into the three static libs and the pio module file: libpio.a, libpiovdc.a, and libpiocommon.a, you can link
any test code to the libs. The PIO library is Fortran, while the VDF libraries are C++ which makes linking a delicate operation. The process for doing it
changes depending on what compiler suite you are using, and possibly what version of compiler. For example, to use the intel compiler suite to link to a
test_lib.F90 user program:

Intel Compiler Suite

Build your user program into an object file using ifort through the mpi wrapper script

mpif90 -c test_lib.F90

Link your user program to the libraries (static libs and pio.mod are located in current dir):

mpif90 test_lib.o -o TestLib -cxxlib -L. -L/path/to/pnetcdf/lib -lpio -lpiovdc -lpiocommon -lpnetcdf -lexpat

GNU Compiler Suite

Build your user program into an object file

mpif90 -c test_lib.F90 -ffree-line-length-none

Link your user program to the librares, using either gfortran or g++ through the mpi wrappers:

GFORTRAN

mpif90 test_lib.o -o TestLib -L. -L/path/to/pnetcdf/lib -lpio -lpiovdc -lpiocommon -lpnetcdf -lexpat -lstdc++

G++

mpiCC test_lib.o -o TestLib -L. -L/path/to/pnetcdf/lib -lpio -lpiovdc -lpiocommon -lpnetcdf -lexpat -lgfortran

WARNING: Depending on your installation the default mpi library might not contain the appropriate methods. If you get warnings about
undefined mpi symbols in either the Fortran libpio or the C++ libpiovdc, then the mpi compiler script is not providing the symbols for said
language and those MPI functions must be imported separately. For the OpenMPI implementation, the specific libraries needed are libmpi_cxx
and libmpi_f77 when linking with gfortran and g++, respectively.

USING PIOVDC
PIOVDC functions as a well integrated extension to PIO, all that is required to use PIOVDC is overloading a few normal PIO api calls and omitting a few
unnecessary PIO steps if you do not plan on using non compressed data. If the user is familiar with PIO, then using PIOVDC will take almost no additional
effort. For those unfamiliar with PIO, I will explain the basic workflow. Complete PIO documentation is available .here

This workflow assumes that your program is running in an MPI environment, with multiple MPI tasks.

http://web.ncar.teragrid.org/~dennis/pio_doc/html/

1.
a.
b.
c.

2.
a.

b.

3.
a.

4.
a.

i.
1.
2.
3.
4.

ii.
1.
2.
3.

5.
a.

i.

ii.

b.

6.
a.
b.

Prerequisites

prepared user data - as PIOVDC only works with in-memory data, the program must already have loaded the data in memory. PIO provides facilities for
reading data into memory, but the file formats are not guaranteed to support the user program data (PNetCDF, NetCDF +HDF5, MPI-IO, and raw binary
are supported by PIO) and PIOVDC is not coded to use these facilities to get the data into memory as part of the regular operation.

available space - PIO uses special data rearrangement in order to ensure that IO gets good performance. As a result, the memory requirements for a
PIOVDC using program can be 2-3X the size of the data set you intend to write. Please ensure that all of the MPI tasks together have enough memory to
run your data set beforehand, as the performance can be slow and unreliable when not enough memory is supplied.

WARNING: PIO is highly optimized IO software, and as a result is very dependent on the underlying performance of the machine it is running on.
Depending on the architecture and the way that the machine is setup it is also possible that you may see non-linear scaling. For example, on the Janus
super computing cluster a 1024^3 sample data set can be written using 64 computational and 64 IO tasks, but it takes 4x the amount of tasks (256 comp,
256 IO) to safely write a 2048^3 data set.

Workflow

An example program can be found . This is the program used to test the PIOVDC compression with in data held in memory. A quick summary of the here
general usage of PIOVDC and PIO follows:

Initialize PIO
PIO requires the use of MPI, so MPI must first be started
call MPI_Comm_rank to get the rank of the current process
call PIO_Init - requires setting arguments to certain values to get the expected behavior. See the file pio1_4_0_vdc/pio/test_lib.F90 that
comes in the repository for an example

Set up compdof
IO in PIO is accomplished by converting from a computational decomposition, which is the arrangement of data used by a user program,
to an IO decomposition used by PIO to write out data using either a subset of or the entire set of computational tasks.
A compdof is simply an array that maps the local data held by a single MPI task to the global array being written by PIO. For example,
for two MPI tasks writing an 2x2x2 cube of data, the compdof for the first task can map the 4 values contained by task 0 to the global
indices (1, 2, 3, 4), and the 4 values contained by task 1 to the global indices(5, 6, 7, 8). It does not necessary have to be a linear
relationship, using the compdof allows one to map a local element of data to any global index. As long as there are no conflicts PIO is
content to take whatever mapping that is handed to it

Initialize PIO decomposition
Once you have your comp->global io mapping PIO takes that information, and an IO start/count for each MPI task, and creates the
decomposition necessary to support the IO that the user desires. For PIOVDC, the iostart/counts are automatically calculated and the
user need not worry about setting them, simply call the initdecomp method with your compdof and no start/counts like in the test_lib
example.

Define files to output
PIO behaves as a higher level abstraction that strongly resembles the NetCDF conventions. As such there is a process for defining files.
This process differs depending on if you plan on writing compressed VDC files or regular uncompressed PIO files.

Uncompressed files
Create file
Define dimensions of the data set
Define variables that will be stored in the file
End file definition, file is now out of define mode and can be written to.

Compressed files
Create file (file is not valid until define mode is left)
Define variables that will be stored in file (VDC collections always have three dimensions, x/y/z, of a set range)
End file definition, file is now out of define mode and can be written to.

Write/Read Data
Once all the setup is accomplished, the user program can call writedarray to output the local data held by the MPI task. There is a slight
difference between calling the method for compressed vs uncompressed data

Due to the design of a VDC compressed files need the timestep data for every write and read of data. A VDC is a capable of
storing the data from multiple time steps together, hence the requirement to specify which time step a write belongs to.
Optionally, one can change the level of detail and refinement level for each write. The way that compression works in a VDC is
that the data is run through a wavelet transformation, and the coefficients of the transform are then stored inside netcdf files.
The default compression levels are 1:1, 10:1, 100:1, and 500:1. Progressive compression comes from the fact that each of
these compression levels corresponds to a single netcdf file. The level of detail functions as selector that allows you to choose
which of these compression levels you want to be outputted. For example, an LOD of -1 defaults to outputting all compression
files, a LOD of 0 outputs only the most compressed 500:1 level, and 1 outputs 500:1 and 100:1 and so on.

Due to the way PIO is setup, it is possible to interleave calls to write compressed and uncompressed data, the user simply has to
manually keep track of the files being written to and their variables.

Close PIO
Before calling PIO's close function all non-compressed files must be closed
After calling PIO's finalize function remember to close MPI by calling it's finalize function

http://code.google.com/p/parallelio/source/browse/trunk/testpio/test_lib.F90

	PIOVDC

